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ABSTRACT 

An examination of relationship between two neighborhood systems (relative 
to two linear topologies) of extreme points yields a unified approach to some 
known and new results, among which are Bessaga-Petczyfiski's theorem on 
closed bounded convex subsets of separable conjugate Banach spaces and 
Ryll-Nardzewski's fixed point theorem. 

§0. Introduction. Let C be a compact subset of a Banach space E.  Then, 
of course, the norm topology and the weak topology agree on C. Now suppose 
that C is only weakly compact. Then the identity map: (C, weak)--. (C, norm) 
is no longer continuous in general. Nevertheless one may still ask how the set 
of points of continuity of this map is distributed in C. In particular, when C 
is convex as well as weakly compact, is the identity map: (C, weak) ~ (C, norm) 
continuous at any of the extreme points of C, i.e., do there exist extreme points 
of C which have weak neighborhoods (relative to C) of arbitrarily small diameter? 
The importance of an answer to such a question is demonstrated in Rieffel [7] 
and in note [6]. Professor J. L. Kelley also recognized the relevance of this 
question to Ryll-Nardzewski's fixed point theorem. The work of Lindenstrauss 
in [4] yields the following answer: if C is a weakly compact, convex subset of a 
separable Banach space, then there are " m a n y "  extreme points of C, where 
the identity map (C, weak) ~ (C, norm) is continuous. This fact was proved by 
using deep Banach space techniques due to Kadec and Lindenstrauss. In the 
present article, we shall generalize this result in various directions. The main 
theorem of this paper (Theorem 2.3) is stated in somewhat obscure, if not pedantic, 
language, because we tried to combine all the generalizations into one theorem. 
However, we hope this is forgiven because of the diverse applications of the single 
theorem. Here are some of the consequences of the main theorem: each bounded 
subset of a separable, conjugate Banach space is "dentable" in the sense of [7]; 
each closed, convex, bounded subset of E is the closed convex hull of its extreme 
points, where E is either a separable, conjugate Banach space or a Frrchet space 
such that E** is separable relative to its strong topology. In addition, a slight 
generalization of Ryll-Nardzewski's fixed point theorem can easily be derived 
from the main theorem. 
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The paper is organized as follows: Section §0, the present one, is the introduc- 
tion. Section §1 contains the preliminary material, and section §2 is devoted to 
the main theorem. Our proof of the main theorem is independent of Lindenstrauss' 
work and is quite different in spirit. Category plays a large r61e throughout §§1-2. 
Section §3 gives applications of the main theorem. Our terminology and notation 
will be those of Kelley, Namioka, et al. [3]. 

Finally, we wish to thank R. Phelps for many enlightening discussions on the 
subject of the present paper. 

1. Preliminaries. Let (E,~-) be a linear topological space, and let A be a 
subset of E.  Then we denote by (A,~--) the space A with the topology induced 
by 3- .  I f  p is a pseudo-norm on the linear space E,  then ~-'~ denotes the pseudo- 
norm topology on E given by p. The pseudo-norm p is lower 3"-semicontinuous 
if {x:p(x) <= 1} is J--closed. If  V is a convex, circled, J-c losed subset of E,  which 
is radial at 0,2 then the Minkowski functional of V is lower ~--semicontinuous. 
For instance, if E is a normed linear space, then the norm on E is lower w-semi- 
continuous, and the norm on the dual E* is lower w*-semicontinuous, where w 
and w* are the topologies w(E,E*) and w(E*,E) respectively. 

1.1 LEMMA. Let X be a compact Hausdorff space, and let (Ci:i = 1,2,...} 
be a sequence of closed subsets of X such that X = (_J{C~: i =  1,2,.. .}. Then 
[.J {IntCi: i = 1,2,...} is dense in X ,  where IntC~ is the interior of Ci in X .  

Proof. We may assume that X ¢ ~ .  Let U be an open nonempty subset 
of X.  Then U is locally compact, and hence U is of the 2nd category in itself. 
Since U = U { U n  C~: i = 1,2,...} and UnC~ is closed in U, for at least 
one i, U n C~ has non-empty interior relative to U and hence relative to X .  
Therefore, Un l , . )  {IntCi: i =  1,2,..-} ~ ~ ,  and since, U is arbitrary, 
L) {Int Ci: i = 1,2, ...} is dense in X.  

1.2 PROPOSmON. Let (E,~-) be a Hausdorff linear topological space, let p 
be a lower J'-semicontinuous pseudo-norm such that (E,~q-p) is separable, and 
let K be a 3"-compact subset of E. The set of all points of continuity of the 
identity map: (K,~--)~(K,3"p) is a dense G~ subset of ( K , ~ ) .  

Proof. For a subset X of E,  define p-diam(X) = s u p { p ( x -  y): x , y ~ X } .  
For each 5 > 0, let As be the union of all open subsets of (K,~--) of p-diam < 5. 
Clearly A, is open. Let S = {x:p(x)< 5/2}. Then, since (E,3"p) is separable, 
there is a sequence {xi} in E such that K = U { K n ( x ~ + S ) :  i =  1,2,. . .},  
and each K t~ (x, + S) is J--closed because p is lower J'-semicontinuous. Hence, 
by Lemma 1.1, the union of the interiors of K n(x ,  + S) in (K,3-)  is dense in 
K ,  and this union is clearly contained in A~. Therefore As is a dense open subset 

(2) v is radial at 0, if, for each x in E, there is a positive number t such that sx ~ Vwhenever 
O ~ s ~ _ t .  
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of(K,  J- ) .  Now the set of points of continuity of the identity map: (K, 3-) ~ (K oj-p) 
is precisely ("] {A1/~: n = 1,2, . . . ) ,  and this set is dense in (K,3-),  because (K,3-) 
is of the 2rid category in itself. 

In order to state the corollary, we introduce the following notion, which will 
be useful in the sequel as well. A locally convex linear bitopological space is a 
triple (E; J - l ,  : ' 2 )  such that J-1 and ~-'2 are locally convex vector topologies 
for the linear space E and such that there is a local base for J '~ consisting of 
3-2-closed sets. Clearly the last condition is equivalent to: a family {p=} of 
Yl-continuous, lower J2-semicontinuous pseudo-norms determines the topology 
~-1 i.e. a net {xr} : - :converges  to x if and only if limTp~(x r - x) = 0 for each 
a. Let (E, ~ be a locally convex linear topological space, and let E* be its dual. 
Then (E;5,w(E,E*)) ,  (E*; s(E*,E),w(E*,E)) and (E*;m(E*,E),w(E*,E)) are 
examples of locally convex linear bitopological spaces. 3 

1.3 COROLLARY. Let (E;~'-1,3-2) be a locally convex linear bitopological 
space such that (E,~-'~) is pseudo-metrizable and separable and (E,J'2) is 
Hausdorff. I f  K is a ~J'2-compact subset of E,  then the set of all points of con- 
tinuity of the identity map: (K, Y2)  -~ (K,3-1) is a dense G~ subset of (K,~-2). 

Proof. Let {p~} be a sequence of Yl-continuous, lower ~-2-semicontinuous 
pseudo-norms which determines Y l  • Let Z~ be the set of all points of continuity 
of the identity map: (K, ~-'2) ~ (K, 5p,) .  By Proposition 1.2, each Z~ is a dense 
G6 subset of (K,J-2),  and therefore Z = 0 {Z~: i = 1,2,...} is also a dense G0 
subset of (K, ~-2). The set Z is precisely the set of all points of continuity of the 
identity map ( K , g ' 2 ) ~ ( K , 9 " I ) .  

In Proposition 1.2 and Corollary 1.3, the assumption of separability is necessary. 
The following example was suggested by E. Michael. Let M be a compact Haus- 
dorff space such that no singleton is Go, let E be the Banach space C(M) with 
the supremum norm, and let e: M ~ E* be the evaluation map. Then e[M] is 
a weak* compact subset of E*. If  the identity map: (e[M],weak*) ~ (elM], norm) 
is continuous at e(m), m ~ M,  then {m} is Go in M.  Therefore this map is not 

0 1 "F' continuous at any point of e[M]. For M,  we may take for instance [ , J . 

2, The main results. In Corollary 1.3, suppose K is convex as well as ~-2- 
compact. Then we may ask, as we have done in the introduction, whether the 
identity map (K,J '2)---~(K,J ' I )  is continuous at any of the extreme points of 
K .  We shall show below that this is indeed the case. We need the following theorem 
of Choquet. The symbol ext(K) denotes the set of all extreme points of K .  For 
a proof of Choquet's theorem, see [2; p. 355]. 

2.1 THEOREM. (Choqne0. Let ( E , ~ )  be a Hausdorff locally convex linear 

(3) s(E*, E), w(E*, E) and re(E*, E) are respectively the strong, weak and Mackey topologies 
induced on E* by the natural pairing of E* and E. 
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topological space, and let K be a non-empty, compact, convex subset of E. 
Then (ext(K),~') is of the 2nd category in itself. 

The essential idea of the proof of the next theorem is in the proof of the lemma 
in [6]. We shall, however, give the proof in full for the sake of completeness. 

2.2 TrmORE~. Let (E,~q-) be a Hausdorff locally convex linear topological 
space, let p be a lower J'-semicontinuous pseudo-norm on E such that (E,~-'p) 
is separable, let K be a ~'-compact, convex subset of E,  and let Z be the set of 
all points of continuity of the identity map ( K , ~ )  ~ (K,.~rp). Then Z ~ ext(K) 
is a dense G~ subset of (ext(K),~-). 

Proof. We may assume that K ~ ~ .  Let X = ext(K) and 8 > 0. Let B~ be 
the subset of X such that u e B 8 if and only if there is a neighborhood of u in 
(K, ~ of p-diam ~ 8. Clearly B~ is an open subset of (X, J ) .  We will show that 

B8 is dense in (X, ~ ) .  
Let W be an arbitrary ~r-open subset of E such that W n X # ~ ; we must 

show that Be n W ¢ ~ .  Let D be the J'-closure of X = ext(K). Then D is 3". 
compact and W n D ~ ~ .  By prop. 1.2, the set of all points of continuity of the 
identity map: (D, 3 " ) ~  (D, 3-~) is dense in (D, J-). Hence there is a 3--open subset 
V of E such that W n  D D V n  D ~ ~ and p-diam(V~ D) < e/2. Let K s be 
the Y-closed, convex hull of the 3"-compact set D ~ V, and let K2 be the J--closed 
convex hull of D n V. Since K1 and K2 are 3"-compact and X c K1 L) K2, K is 
the convex hull of Ks L) K2. Note also that p-diam(K2) < e/2, because p is lower 
3"-semicontinuous. Moreover K1 # K, because ext(K1) = D ~ V and D n V # ~ .  
Let re(0,1],  and let C, be the image of the map f,: K1 x K2 x [r, 1 ] ~ K  
defined by f,(xx, x2, 2) = 2x~ + (1 - 2)x2. Then C, is a 3"-compact, convex subset 
of K. In addition, C~ ~ K, because X ~ C, = Ka and K~ ~ K. Let y E K ,~ C,. 
Then y is of the form y = ).xl + (1 - 2)x 2, x~ e Ki, 2 s [0, r). Hence p(y - x2) 
= 2p(x~ - x2) ~ rd, where d = p-diam(K). Now by the absorption theorem 
[3; p. 91], the set {x: p(x) < 1} absorbs K; hence K is J'v-bounded, and it follows 
that d < oo. Taking into account that p-diam(K2)< 8/2, we see that p-diam 
( K ~ C , ) ~ / 2 + 2 r d .  Let C = C ,  with r=~/4d;  then p-diam(K,~C)<e.  
Since C ~ K, there is u in (K ~ C) n X, and K ~ C is a neighborhood of u in 
(K, oq) ofp-diam < e. Hence u e B,. Next, since C ~ K~ ~ D ~ V, u ~ D n V ~ W. 
Therefore u ~B, n W, and consequently B~ ~ W ~ ~ .  Hence B~ is dense in 
(X,~r). 

Finally, to conclude the proof, observe that Z ~ x = A { B ~ / , :  n =  1,2,-.-} 
and that the set A{B~/,: n = 1,2,... } is a dense G~ subset of (X,~ a-) in view of 

Theorem 2.1. 

2.3 T.q~. MAIN TrmORnM. Let (E; ~'~,~'2) be a locally convex linear bito- 
pologicaI space such that ( E , J ~ )  is pseudo-metrizable and separable and (E,~'2) 
is Hausdorff, let K be a ~'2-compact, convex subset orE, and let Z be the set of 
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all points of continuity of the identity map: ( K , ~ 2 )  -~ (K ,~ I ) .  Then Z r~ ext(K) 
is a dense G~ subset of (ext(K), Y2), and the J-2-closed, convex hull of Z t~ ext(K) 
is K. 

Proof. Let Z i be as in the proof of Corollary 1.3. Then, by Theorem 2.2, 
Zi Next(K) is a dense G~ subset of (ext(K),~v2). By Theorem 2.1, (ext(K),~r2) 
is of the 2nd category in itself. Therefore N {Z~ t~ext(K): i =  1,2,...) 
[ N {Z~: i = 1,2,...)] n ext(K) -- Z n ext(K) is a dense G~ subset of (ext(K), ~J2). 
The second conclusion follows from the first one, because of the Krein-Milman 
theorem. 

§3. Applieatioas. In this section, we shall derive several consequences of 
the material presented in §2. If (E, ~ is a locally convex, separable, metrizable, 
linear topological space, then the bitopological space (E;3", w(E,E*)) satisfies 
the conditions of Theorem 2.3. Thus we obtain: 

3.1 THEOREM. Let ( E , ~ )  be a locally convex, separable, metrizable, linear 
topological space, let K be a weakly~ compact (i.e. w(E,E*)-compact), convex 
subset of E, and let Z be the set of all points of continuity of the identity map 
(K, w(E, E*)) -~ (K, ~').  Then Z r~ ext(K) is weakly dense in ext (K), and the 

closed convex hull of Z t~ext(K) is K .  

REMARKS (a). In Theorem 3.1, instead of the separability of (E ,3 ) ,  one can 
assume that K is J-separable or, equivalently, that K is weakly separable, be- 
cause then the dosed subspace generated by K will be separable. 

(b) If E is a separable Banach space, then Theorem 3.1 is a consequence of 
Lindenstrauss' theorem [4; Theorem 4]. For, if u is a "strongly exposed" 
point of K, then the identity map (K, weak)~ (K, norm) is continuous at u. 

Let E be a Banach space such that E* is separable. Then the bitopological 
space (E*;J',w(E*,E)) also satisfies the conditions of Theorem 2.3, where ~r 
is the norm topology for E*. Thus we obtain: 

3.2 THEOREM. Let E be a Banach space such that E* is separable, let K 
be a weak* compact, convex subset of E*, and let Z be the set of all points of 
continuity of the identity map: (K, weak*)~(K,  norm). Then Z next (K)  is 
weak* dense in ext(K). 

3.3. COROLLARY. Let E be a Banach space such that E* is separable, let K 
be a norm-closed, bounded, convex subset of E*, and let Kt  be the weak*-closure 
of K .  Then K t3 ext(K1), which is a subset of ext(K), is weak* dense in ext(Kl). 

Proof. Since K is bounded, K1 is weak* compact. Hence Theorem 3.2 applies 
to Kt .  Let Z be the set of all points of continuity of the identity map 
(Kt,weak*) ~ (Kl,norm), and let z e Z. Since K is weak* dense in Kt ,  there 
is a net {x~} in K converging to z relative to the weak* topology. Then {x~} con- 
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verges to z relative to the norm topology, because z e Z,  and therefore z e K .  
Hence Z c K and Z N ext(Ki) c K / h  ext(Ki). It follows from Theorem 3.2 that 
K ~ex t (Ki )  is weak* dense in ext(K1). Finally, since Ki  D K,  K rhext(K1) 
= ext ( K ) .  

From Corollary 3.3, we may deduce a recent result due to Bessaga and 
Pelczyfiski [ I ] :  

3.4 COROLLARY. Let E be a Banach space such that E* is separable. Then 
each norm-closed, convex, bounded subset of E* is the norm-closed, convex 
hull of its extreme points. 

Proof. According to Lemma 1 in [5], it is sufficient to prove that, if K is 
a non-empty, norm-closed, convex bounded subset of E*, then ext(K) ~ ~ .  Let 
K 1 be the weak* closure of K .  Then ext(K~) ~ ff~f, and hence, by Corollary 3.3, 

Z~ ~ K n ext(Ki) = ext(K). 

R~tAg~:. As pointed out by Bessaga and Pelczyfiski [1], the separability of 
E* is essential in Corollary 3.4. 

A subset A o f a  Banach space E is called dentable [7], if, for each e > 0, there 
is x in A such that x is not in the convex, closed hull of A,,~ { y : l l x -  Y[I < ~}" 
It is easily seen that A is dentable if the closed, convex hull of A is. A point x of 
A is called a denting point if for each e > 0, x does not belong to the closed, 
convex hull of A ~  { y : [ I x -  yII =< e}. Clearly A is dentable if the closed, convex 
hull of A contains a denting point. A denting point is necessarily extreme. It is 
easy to deduce from Theorem 3.1 that a relatively weakly compact subset of a 
separable Banach space is dentable. M. Rieffel asked [7; Question 1] whether 
the separability here is essential. This question, we believe, is still open. Rieffel 
also raised the question [7; Question 3] : which Banach spaces have the property 
that all bounded subsets are dentable? He proved that l~(X) has this property, 
where X is any set (possibly uncountable). We give another family of Banach 
spaces with this property. 

3.5 THEOREM. Let E be a Banach space such that E* is separable. Then 
each nonempty, norm-closed, convex, bounded subset of E* contains a denting 
point. Consequently each bounded subset of E* is dentable. 

Proof. Let K be a nonempty, norm-closed, convex, bounded subset of E* 
let K1 be its weak* closure. Let u be a point in ext(Kx) where the identity 
map: (Ki ,weak*)-~(Kl ,norm) is continuous. By Theorem 3.2, we know such 
a point exists, and, as shown in the proof of Corollary 3.3, u ~ ext(K). Let e > 0. 
Then there is a weak* open subset W of E* such that u ~ W n K ~  and 
diam(W n K1) <= e. The point u is not in the weak* closed, convex hull of K1 "-~ W, 
and afortiori u is not in the (norm)-closed, conv~ hull of K 1 ,-~ W. Clearly 
K 1 - W = K - ( x :  I I x - u l I  < e } ,  and hence u is not in the closed, convex 
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hull of K ,-, {x: [I x - u II ~ e}. Therefore u is a denting point of K.  The second 
condusion is clear from the remarks preceding the theorem. 

Let E be a locally convex, metrizable linear topological space, let E* be its 
dual with the strong topology (i.e. s(E*,E)), and let E** be the dual of E* with 
the strong topology (i.e. s(E**, E*)). Let I denote the evaluation map: E ~ E**. 
Then I is one-to-one and relatively open. Since E is metrizable, the topology 
is bound [3; 22.3], and hence it is evaluable [3; 20.4], i.e. I is continuous. There- 
fore I is a linear topological isomorphism of E onto I[E]. A Fr3chet space is 
a locally convex, complete metrizable linear topological space. A linear topolo- 
gical space is called quasi-separable, if each bounded subset is separable. 

3.6. THEOREM. Let E be a Frdchet space such that E** is quasi-separable 
relative to the strong topology. Then each closed, bounded, convex subset of 
E is the closed convex hull of its extreme points. 

Proof. Let K be a closed, bounded, convex subset of E, abd let I be the 
evaluation map: E ~  E**. Then the weak* (=  w(E**,E*)) closure K 1 of IEK] 
in E** is weak* compact and strongly bounded. Let F be the subspace of E** 
generated by K 1 . Then, since E** is quasi-separable, (F,s(E**,E*)) is separable 
and metrizable, and thus we may apply Theorem 2.3 to the bitopological linear 
space (F;s(E**,E*), w(E**,E*)) and K 1 . Let Z be the set of all points of con- 
tinuity of the identity map: (Kl,weak*)-~ (K1, strong). Because K is complete, 
IEK] is strongly closed in E**, and, as in the proof of Corollary 3.3, we see that 
Z c IEK ] . Hence Z n ext(K1) c ext(IEK]) = I[ext(K)], and Theorem 2.3 implies 
that the weak* dosed, convex hull of I[ext(K)] is KI .  It follows that the (weak) 
closed, convex hull of ext(K) is K.  

REMARK. Let E be a Fr6chet space satisfying the hypothesis of Theorem 3.6. 
Then, by [3; 22.15], each strongly bounded subset of E** is equicontinuous, 
i.e. E* is evaluable. Therefore, by [3; 22.15], E* is bound and barrelled as well; 
that is, E is a distinguished (=  distingud) Fr~chet space. 

Finally, we present a bitopological version of Ryll-Nardzewski's fixed point 
theorem. Let Q be a subset of a locally convex linear topological space (E, oq') 
and let ~a be a semi-group of transformations of Q into Q. The semigroup Sa 
is 3"-noncontracting on Q, if, for each pair of distinct points x, y of Q, there 
is a 3--continuous pseudo-norm p on E such that: 

inf{p(Tx - Ty): T~SP} > O. 

A proof of the next theorem is a straightforward modification of the proof of 
Ryll-Nardzewski's fixed point theorem given in [6]. Theorem 2.2 takes the place 
of the lemma in E6]. 

3.7. THEOREM. Let (E; J ' l ,  J-2) be a locally convex linear bitopological 
space such that (E, 3"1) is separable and (E, 3"2) is Hausdorff, let Q be a nonempty, 
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J '2 -compac t ,  convex subset o f  E ,  and  let 5P be a semigroup o f  3"2-continuous 

affine transformations on Q into itself. I f  dP is .~' l-noncontracting on Q then 

• 9 ~ has a common f i x ed  point in Q.  

RB~,RK. In Theorem 3.7, the assumption of  the separability of  ( E , J ' I )  can 
be dropped i f (E ;  ~Jt, ~q'2) satisfies the following condition: 

(S) Each ~'2-compact, ~2-separable subset of E is included in a 3-1-separable 
subset of  E .  

I f  (E ,~ ' )  is a locally convex space then (E;~- ,  weak) satisfies (S). However, if 
E is a separable Banach space, then (E* ;norm, weak*) satisfies (S) if and only 

if E* is separable relative to the norm topology. 
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